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Abstract

The spatial structure of populations is a key element in the understanding of the large-scale spreading of epidemics. Motivated by the

recent empirical evidence on the heterogeneous properties of transportation and commuting patterns among urban areas, we present a

thorough analysis of the behavior of infectious diseases in metapopulation models characterized by heterogeneous connectivity and

mobility patterns. We derive the basic reaction–diffusion equations describing the metapopulation system at the mechanistic level and

derive an early stage dynamics approximation for the subpopulation invasion dynamics. The analytical description uses a homogeneous

assumption on degree block variables that allows us to take into account arbitrary degree distribution of the metapopulation network.

We show that along with the usual single population epidemic threshold the metapopulation network exhibits a global threshold for the

subpopulation invasion. We find an explicit analytic expression for the invasion threshold that determines the minimum number of

individuals traveling among subpopulations in order to have the infection of a macroscopic number of subpopulations. The invasion

threshold is a function of factors such as the basic reproductive number, the infectious period and the mobility process and it is found to

decrease for increasing network heterogeneity. We provide extensive mechanistic numerical Monte Carlo simulations that recover the

analytical finding in a wide range of metapopulation network connectivity patterns. The results can be useful in the understanding of

recent data driven computational approaches to disease spreading in large transportation networks and the effect of containment

measures such as travel restrictions.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The metapopulation modeling approach is an essential
theoretical framework used in population ecology, genetics
and adaptive evolution to describe population dynamics
whenever the spatial structure of populations is known to
play a key role in the system’s evolution (Hanski and
Gilpin, 1997; Hanski and Gaggiotti, 2004; Tilman and
Kareiva, 1997; Bascompte and Solé, 1998). Metapopula-
tion models rely on the basic assumption that the system
e front matter r 2007 Elsevier Ltd. All rights reserved.
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under study is characterized by a highly fragmented
environment in which the population is structured and
localized in relatively isolated discrete patches or subpo-
pulations connected by some degree of migration. Classic
metapopulation dynamics focuses on the processes of local
extinction, recolonization and regional persistence (Levins,
1969, 1970), as the outcome of the interplay between
migration processes among unstable local populations and
population dynamics (e.g. birth and death rates, competi-
tion and predations). This paradigm is extremely useful
also in the case of infectious diseases, and can be applied to
understand the epidemic dynamics of spatially structured
populations with well-defined social units (e.g. families,
villages, city locations, towns, cities, regions) connected
through individual mobility (Hethcote, 1978; May and
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Anderson, 1979; Anderson and May, 1984; May and
Anderson, 1984; Bolker and Grenfell, 1993, 1995; Keeling
and Rohani, 2002; Lloyd and May, 1996; Grenfell and
Harwood, 1997; Grenfell and Bolker, 1998; Ferguson et al.,
2003; Riley, 2007). The arrival of the infection in any
subpopulation and its epidemic evolution are determined
by the coupling generated by the mobility processes among
subpopulations. The metapopulation dynamics of infec-
tious diseases has generated a wealth of models and results
considering both mechanistic approaches taking explicitly
into account the movement of individuals (Baroyan et al.,
1969; Rvachev and Longini, 1985; Longini, 1988; Flahault
and Valleron, 1991; Sattenspiel and Dietz, 1995; Keeling
and Rohani, 2002; Grais et al., 2003; Ruan et al., 2006) and
effective coupling approaches where the diffusion process is
expressed as a force of infection coupling different
subpopulations (Bolker and Grenfell, 1995; Lloyd and
May, 1996; Earn et al., 1998; Rohani et al., 1999; Keeling,
2000; Park et al., 2002; Vázquez, 2007). Recently, the
metapopulation approach is being revamped in computa-
tional approaches for the large-scale forecast of infectious
disease spreading (Grais et al., 2004; Hufnagel et al., 2004;
Colizza et al., 2006a, 2007a; Cooper et al., 2006; Hollings-
worth et al., 2006; Riley, 2007).

Metapopulation epidemic models, especially at the
mechanistic level, are based on the spatial structure of
the environment, and the detailed knowledge of transpor-
tation infrastructures and movement patterns. The increas-
ing computational power and informatics advances are
beginning to lift the constraints limiting the collection of
large spatiotemporal data on human behavior and
demography, finally allowing for the formulation of
realistic data driven models. On the other hand, networks
which trace the activities and interactions of individuals,
social patterns, transportation fluxes and population
movements on a local and global scale (Liljeros et al.,
2001; Schneeberger et al., 2004; Barrat et al., 2004;
Guimerá et al., 2005; Chowell et al., 2003) have been
analyzed and found to exhibit complex features encoded in
large-scale heterogeneity, self-organization and other prop-
erties typical of complex systems (Albert and Barabási,
2002; Dorogovtsev and Mendes, 2003; Newman, 2003;
Pastor-Satorras and Vespignani, 2004). In particular, a
wide range of societal and technological networks exhibits
highly heterogeneous topologies. The airport network
among cities (Barrat et al., 2004; Guimerá et al., 2005),
the commuting patterns in inter- and intra-urban areas
(Chowell et al., 2003; Barrett et al., 2000; De Montis et al.,
2007), and several info-structures (Pastor-Satorras and
Vespignani, 2004) are indeed characterized by networks
whose nodes, representing the elements of the system,
have a wildly varying degree, i.e. the number of connec-
tions to other elements. These topological fluctuations are
mathematically encoded in a heavy-tailed degree distri-
bution PðkÞ, defined as the probability that any given
node has degree k, and have been found to have a large
impact on epidemic phenomena on complex contact
patterns (Anderson and May, 1992; Pastor-Satorras and
Vespignani, 2001a, b; Moreno et al., 2002; Lloyd and May,
2001; Barthélemy et al., 2005).
Motivated by the above findings we provide here the

analysis of the behavior of epidemic models in metapopu-
lation systems with heterogeneous connectivity patterns. In
order to have a mechanistic description of the system, we
derive the deterministic reaction–diffusion equations de-
scribing the evolution of the epidemic in the metapopula-
tion systems. The heterogeneity of the network is taken
explicitly into account by partitioning subpopulations
according to degree block variables. By using a homo-
genous approximation for subpopulations with the same
degree, it is possible to provide explicit results for the
system behavior expressed as functions of the moments of
the degree distribution of the substrate networks. In order
to account for the discreteness of the system and micro-
scopic fluctuations in the diffusion processes we derive also
coarse-grained equations for the invasion dynamics at the
subpopulation level. The system is characterized by the
standard (i.e. single population) epidemic threshold and by
a global invasion threshold providing the condition for the
infection of a macroscopic number of subpopulations. The
first threshold defines the usual reproductive number R041
that is just a function of the disease parameters while the
second threshold defines a subpopulations reproductive
number R�41 that depends also on the diffusion rate of
individuals among subpopulations (Ball et al., 1997; Cross
et al., 2005, 2007). We find an explicit analytic expression in
the limit R0]1 for the invasion threshold that is found to
depend also on the network heterogeneity. The larger is the
network heterogeneity and the smaller is the diffusion rate
that guarantees the invasion of a finite fraction of
subpopulations. This result provides a framework for the
understanding of the evidence collected on the interplay
between travel and global spread of infectious diseases
(Viboud et al., 2006) and the poor effectiveness of travel
restrictions in the containment of epidemics (Cooper et al.,
2006; Hollingsworth et al., 2006; Colizza et al., 2007a).
Finally, the analytic results are confirmed by mechanistic
Monte Carlo simulations for the infection dynamics in the
metapopulation system, in which each single individual is
tracked in time to account for the discreteness of the
processes involved. Heterogeneous connectivity patterns
among subpopulations are modeled and different values of
the parameters involved are considered to validate the
theoretical results.
The paper is organized as follows. Section 2 introduces

the metapopulation epidemic model on a heterogeneous
network of connections among subpopulations. Two
different kinds of mobility processes are introduced in
Section 3 to analyze the stationary diffusion properties of
the system. Section 4 incorporates the mobility processes
analyzed in the previous section into a metapopulation
epidemic model. Stochastic effects and discrete description
of the processes are considered with a tree-like approxima-
tion for the analysis of the invasion dynamics at the level of
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the subpopulations. The effect of diffusion properties on
the invasion dynamics are analyzed and related to the
existence of an invasion epidemic threshold for the
metapopulation system. In Section 5 the behavior of
the system above the invasion threshold is studied by
mechanistic reaction–diffusion equations using a determi-
nistic degree block variables representation. Finally, in
Section 6 we report extensive mechanistic Monte Carlo
simulations which confirm the analytical findings of the
previous sections.

2. Metapopulation mechanistic model as a microscopic

reaction–diffusion process

Metapopulation models describe spatially structured
interacting subpopulations, such as city locations, urban
areas, or defined geographical regions (Hanski and
Gaggiotti, 2004; Grenfell and Harwood, 1997). Individuals
within each subpopulation are divided into classes denoting
their state with respect to the modeled disease (Anderson
and May, 1992)—such as infected, susceptible, immune,
etc.—and the compartment dynamics accounts for the
possibility that individuals in the same location may get
into contact and change their state according to the
infection dynamics. The interaction among subpopulations
is the result of the movement of individuals from one
subpopulation to the other. It is clear that the key issue in
such a modeling approach is how accurately we can
describe the commuting patterns or traveling of people. In
many instances even complicate mechanistic patterns can
be accounted for by effective couplings expressed as a force
of infection generated by the infectious individuals in
subpopulation j on the individuals in subpopulation i

(Bolker and Grenfell, 1995; Lloyd and May, 1996; Earn
et al., 1998; Rohani et al., 1999; Keeling, 2000; Park et al.,
2002). More realistic descriptions are provided by explicit
mechanistic approaches which include the detailed rate of
traveling/commuting obtained from data or from empirical fit
to gravity law models (for a recent reference, see Viboud et al.,
2006), accompanied by the associated mixing subpopulations
Nij denoting the number of individuals of the subpopulation i

present in the subpopulation j (Keeling and Rohani, 2002;
Sattenspiel and Dietz, 1995; Ruan et al., 2006).

A simplified mechanistic approach uses a markovian
assumption in which at each time step the movement of
individuals is given according to a matrix dij that expresses
the rate at which an individual in the subpopulation i is
traveling to the subpopulation j in the unit time. The
markovian character is in the fact that we do not label
individuals according to their original subpopulation (e.g.
home in a commuting pattern framework) and at each time
step the same traveling probability applies to all individuals
in the subpopulation without having memory of their
origin. This approach is extensively used for very large
populations in the case the traffic wij among subpopula-
tions is known by stating that dij�wij=Nj. Several modeling
approaches to the large-scale spreading of infectious
disease (Baroyan et al., 1969; Rvachev and Longini,
1985; Longini, 1988; Flahault and Valleron, 1991; Grais
et al., 2003, 2004; Hufnagel et al., 2004; Colizza et al.,
2006a, b, 2007a) use this mobility process based on
transportation networks for which it is now possible to
obtain detailed data.
In their simplest formulation markovian mechanistic

mobility processes are equivalent to the classic reaction–
diffusion processes used in many physical, chemical and
biological processes (Marro and Dickman, 1999; van
Kampen, 1981; Murray, 2005). The reaction–diffusion
framework (Colizza et al., 2007b) considers that the
occupation numbers Ni of each subpopulation can have
any integer value, including Ni ¼ 0, that is, void nodes with
no individuals. The total population of the metapopulation
system is N ¼

P
i Ni and each individual diffuses along the

edges with a diffusion coefficient dij that depends on the
node degree, subpopulation size and/or the mobility
matrix. A sketch of the metapopulation model which
shows the different scales of the system is shown in Fig. 1.
The system is composed of a network substrate connecting
subpopulations over which individuals diffuses. Each sub-
population is represented by a node i of the network.
We consider that each node i is connected to other ki

nodes according to its degree resulting in a network with
degree distribution PðkÞ and distribution moments hka

i ¼P
k kaPðkÞ.
In the case of large metapopulation systems with a high

level of heterogeneity the analytical description of the
metapopulation model in terms of specific features of each
single subpopulation is extremely complicate. In the
following we propose an analytical framework that uses
degree block variables to obtain the dynamical equations
describing the system’s behavior, relying on the empirical
evidence pointing to a statistical equivalence of subpopula-
tions having the same degree.

2.1. Metapopulation networks with heterogeneous topology

In the real world, the network specifying the coupling
between different subpopulations is in many cases very
heterogeneous. Examples can be drawn from several
transportation infrastructures, commuting data and census
information (Chowell et al., 2003; Barrett et al., 2000;
Barrat et al., 2004; Guimerá et al., 2005; De Montis et al.,
2007). A particularly relevant one in the field of epidemic
modeling is given by the airline transportation network. In
this case the coupling is provided by the number of
passengers traveling on a given route connecting two
airports, thus yielding a transfer of individuals between the
corresponding urban areas. For instance, Barrat et al.
(2004) reports a detailed study of the International Air
Transport Association1 database which contains the
complete list of world commercial airport pairs connected
by direct flights. Moreover, to each direct flight connection

http://www.iata.org/
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Fig. 1. Schematic representation of a metapopulation model. The system is composed of a heterogeneous network of subpopulations or patches,

connected by migration processes. Each patch contains a population of individuals who are characterized with respect to their stage of the disease (e.g.

susceptible, infected, removed), and identified with a different color in the picture. Individuals can move from a subpopulation to another on the network

of connections among subpopulations.
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between airports j and ‘ is assigned a weight wj‘ which
corresponds to the number of available seats or passengers
on the given route. The obtained network displays high
levels of heterogeneity both in the connectivity pattern and
in the traffic capacities, as revealed by the broad distribu-
tions of the number of connections of each airport, of the
travel flows between connected airports and of the traffic in
terms of number of passengers handled by each airport
(Barrat et al., 2004). These results have been confirmed on
the US subnetwork along different years and considering
both market and segment traffic data2 and analogous
results are recovered by analyzing commuting patterns
data, intra-city traffic among locations and several other
data sets concerning the movements of people and goods
(Chowell et al., 2003; Barrett et al., 2000; Barrat et al.,
2004; Guimerá et al., 2005; De Montis et al., 2007). In
Fig. 2 we report the degree and weight probability
distributions in some examples of these networks. In many
cases we find heavy-tailed distributions varying overseveral
orders of magnitude. For instance, the airline traffic among
different urban areas in the world shows a probability
distribution PðwÞ—where w is the traffic on a single con-
nection—varying over six orders of magnitude (see Fig. 2B).

In addition, it is also possible to find some general
statistical laws relating the traffic and the degree of each
node in the network. In general the behavior of the average
weight along the connection between two subpopulations
with degree k and k0 is a function of their degree

hwkk0 i ¼ w0ðkk0Þy, (1)

where w0 and the exponent y depend on the specific system
(e.g. y ’ 0:5 in the world-wide air transportation network
(Barrat et al., 2004)). A related quantity is the total average
traffic per unit time Tk of the subpopulations with degree k

that behaves as

Tk ¼ Akð1þyÞ. (2)
2BTS, Bureau of Transportation Statistics, http://www.bts.org/.
Here the proportionality constant A and the exponent 1þ
y are defined by the sum rule Tk ¼ k

P
k0 Pðk

0
jkÞw0ðkk0Þy

that must be satisfied on average. Here Pðk0jkÞ represents
the conditional probability that any given edge departing
from a node of degree k is pointing to a node of degree k0.
In the following we will consider the case of uncorrelated
networks in which the conditional probability does not
depend on the originating node, i.e. Pðk0jkÞ ¼ k0Pðk0Þ=hki
(Dorogovtsev and Mendes, 2003; Pastor-Satorras et al.,
2001). This relation simply states that any edge has a
probability to point to a node with degree k0 that is
proportional to the degree of the node. By using this form
for Pðk0jkÞ, we obtain the proportionality constant yielding
A ¼ hk1þy

iw0=hki. It is important to stress that the above
relations defines a statistical equivalence of the subpopula-
tions of degree k. In the following we want to address the
questions of how the large-scale complex features (scale
invariance, extreme heterogeneity, unbounded fluctua-
tions) of interaction and communication networks affect
the behavior of metapopulation models by defining a
mechanistic approach based on the master equations
describing the disease dynamics as a microscopic reac-
tion—diffusion process. The equivalence assumption that
will be used throughout the rest of this paper is crucial in
order to carry out the analytical treatment of the model.
While this assumption is indeed recovered in several data
sets, exceptions and fluctuations have been noted that
would require more complicate calculation schemes.

3. Mobility processes and diffusion properties in

heterogeneous networks

In order to tackle the description of metapopulation
models at the mechanistic level, let us first analyze the
simple diffusion process of a global population of N

individuals who diffuse in a network made of V nodes,
each representing a subpopulation. Each node i stores a
number Ni of individuals as defined in Section 2. In order
to take into account the topological fluctuations of the

http://www.bts.org/
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network we have to explicitly consider the presence of
nodes with a widely fluctuating degree k. A more
convenient representation of the system is therefore
provided by the quantities defined in terms of the degree k

Nk ¼
1

V k

X
ijki¼k

Ni, (3)

where V k is the number of nodes with degree k and the
sums run over all nodes i having degree ki equal to k. The
degree block variable Nk is therefore representing the
average number of individuals in all subpopulations with
degree k. This representation corresponds to a homoge-
neous approximation that does not take into account
possible variations within subpopulations having the same
degree k, assuming they are statistically equivalent. While
the degree-block description is clearly an approximation, as
discussed in the previous section, several data sets provide
empirical evidence for this assumption. In addition, as for
similar homogenous assumptions in single population
models, it allows for an explicit analytic solution of the
metapopulation model while taking into account the
network heterogeneity. Naturally, realistic models would
need to include specific features of each subpopulations,
introducing the heterogeneities that distinguish subpopula-
tions of the same degree.
Let us assume a general framework in which the

individuals move from a subpopulation with degree k to
another with degree k0 with a diffusion rate dkk0 that
depends on the degrees of the origin and destination
subpopulations. The rate at which individuals leave a
subpopulation with degree k is then given by pk ¼

k
P

k0 Pðk
0
jkÞdkk0 . In the following, we will first write the

equations for the dynamics of the individuals under this
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generic type of diffusion, and then address two specific
diffusion rates to find the stationary solutions.

The dynamics of individuals is simply represented by a
mean-field dynamical equation expressing the variation in
time of the subpopulations NkðtÞ in each degree block. This
can be easily written as

qtNkðtÞ ¼ �pkNkðtÞ þ k
X

k0

Pðk0jkÞdk0kNk0 ðtÞ. (4)

The first rhs term of the equation just considers that only a
fraction of particles pk moves out of the node per unit time.
The second term instead accounts for the particles diffusing
from the neighbors into the node of degree k. This term is
proportional to the number of links k times the average
number of particles coming from each neighbors. This is
equal to average over all possible degrees k0 the fraction of
particles moving on that edge dk0kNk0 ðtÞ according to the
conditional probability Pðk0jkÞ. By assuming uncorrelated
networks, the dynamical rate equation (4) for the
subpopulation sizes reads as

qtNkðtÞ ¼ �pkNkðtÞ þ
k

hki

X
k0

k0Pðk0Þdk0kNk0 ðtÞ. (5)

In the following subsections we solve the previous set of
equations for different diffusion processes that consider
diffusion rates depending on the traffic of each node or on
the population size of each subpopulation.
3.1. Traffic dependent mobility rates

Here we assume that the rate at which an individual
leaves a given subpopulation is independent of its degree k,
pk ¼ p 8k. If we also assume homogeneous diffusion along
any given connection, individuals have the same prob-
ability to move along anyone of the links departing from
the node at which they are located. In this case the
diffusion rate along any given link of a node with degree k

will be simply equal to

dkk0 ¼ p=k. (6)

This is obviously not the case in a wide range of real
systems where the extreme heterogeneity of traffic is well
documented (see Subsection 2.1). A more realistic process
therefore considers the movement of individuals to be
proportional to the traffic intensity along a given edge. This
is simply obtained by defining a heterogeneous diffusion
rate for any given individual to go from a subpopulation of
degree k to a subpopulation of degree k0 as

dkk0 ¼ p
w0ðkk0Þy

Tk

. (7)

This relation states that the diffusion rate p is still constant
in each subpopulation but the individuals move on each
connection in a proportion dependent on the actual traffic
on the connection. The denominator Tk ¼ Akð1þyÞ provides
the correct normalization in order to ensure that by
summing over all k edges departing from the node the
overall diffusion rate is p.
By using the expression of Eq. (7) for dkk0 and imposing

pk ¼ p, the dynamical rate equation (4) for the subpopula-
tion sizes reads as

qtNkðtÞ ¼ �pNkðtÞ þ pkð1þyÞ
w0

Ahki

X
k0

Pðk0ÞNk0 ðtÞ. (8)

The stationary solution qtNkðtÞ ¼ 0 does not depend upon
the diffusion rate p that just fixes the time scale at which the
equilibrium is reached and has the solution

Nk ¼ kð1þyÞ
w0

Ahki
N̄, (9)

where N̄ ¼
P

k PðkÞNkðtÞ represents the average subpopu-
lation size. The explicit form of the normalization constant
A ¼ hk1þy

iw0=hki finally provides the explicit stationary
solution

Nk ¼
kð1þyÞ

hkð1þyÞi
N̄. (10)

The above solution states that the population of each node
scales with the node degree in the stationary limit. The
above behavior is simply the effect of the diffusion process
that brings a large number of individuals in well connected,
high traffic nodes, thus showing the impact of network’s
topological (i.e. dependence on k) and traffic (i.e. de-
pendence on y) fluctuations on the subpopulation size
behavior. When y ¼ 0 we recover the homogeneous
diffusion case in which dkk0 ¼ dk ¼ p=k, obtaining

Nk ¼
k

hki
N̄. (11)

In this case the subpopulation size is just fixed from
topological fluctuations and the exponent y clearly appears
as the parameter that takes into account the traffic
fluctuations. It is worth remarking that in this framework,
the subpopulation size as a function of the degree is
constrained by the diffusion processes, a feature that has
not to be expected in real systems where the population size
of local patches can be considered as an independent
variable. On the other hand, the degree dependence is close
to those observed in real systems where in several cases it is
possible to find a relation Nk�kf with 0:5pfp1:5
(Colizza et al., 2006a, b). We can thus consider the
obtained stationary state as a first approximation to the
real case and use the exponent y to explore different levels
of heterogeneity.

3.2. Population dependent mobility rates

In a more general perspective, it is important to have the
possibility of considering the population sizes Nk as
independent variables. This is indeed the case of many
metapopulation models in which the diffusion process
represents the large-scale travel of individuals between
subpopulations, e.g. via air travel. In this framework the
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number of people traveling from a subpopulation to the
other in a unitary time scale is a defined number wij and
the number of traveling individuals is independent from the
population size Ni. This amounts to state that each indivi-
dual in the subpopulation has a diffusion rate

P
j wij=Ni,

where
P

j wij is the total number of people traveling out of
city i in the unitary time scale. In other words, the diffusion
rate of each individual is inversely proportional to the
population size. Empirical evidence obtained from the
study of the world-wide air transportation network (Barrat
et al., 2004) showed the symmetry of the network both in
the directionality and in the travel fluxes. Therefore the
condition wij ¼ wji is satisfied in large-scale real transpor-
tation networks and one obtains

qtNi ¼
X

j

ðwji � wijÞ ¼ 0, (12)

so that any initial conditions for the population size satisfy
the stationary state. In the degree block variable repre-
sentation we can recover the above condition by consider-
ing a diffusion rate for each particle of the form
pk ¼ Tk=Nk. The diffusion rate on any given edge from a
subpopulation of degree k to a subpopulation of degree k0

is therefore given by

dkk0 ¼
w0ðkk0Þy

Nk

(13)

and the degree block diffusion equations read in the
uncorrelated networks case as

qtNkðtÞ ¼ �Tk þ kð1þyÞw0
hk1þy

i

hki
. (14)

Since we know that by normalization Tk ¼ kð1þyÞ

w0hk
1þy
i=hki, we recover by definition the solution

qtNkðtÞ ¼ 0 that allows any stationary value distribution
Nk. Differently from the results obtained in the previous
subsection, where each individual has the same diffusion
rate p of leaving a subpopulation, Eq. (12) shows that a
population dependent diffusion process does not fix the
subpopulation size, which can be given as a parameter of
the model.

4. Epidemic spreading and the invasion threshold

In order to explore the epidemic behavior in metapopu-
lation models, the disease dynamics needs to be explicitly
considered inside each subpopulation. In the following we
will consider the standard compartmentalization approach
in which individuals exist in a certain number of discrete
states such as susceptible, infected or permanently recov-
ered (Anderson and May, 1992). The paradigmatic
epidemiological model one can consider is the suscepti-
ble-infected-removed (SIR) model (Anderson and May,
1992; Murray, 2005), where the total number of individuals
Nj in the subpopulation j is partitioned in the compartment
SjðtÞ, I jðtÞ and RjðtÞ denoting the number of susceptible,
infected and recovered individuals at time t, respectively.
By definition it follows Nj ¼ SjðtÞ þ I jðtÞ þ RjðtÞ. The
disease transmission is described in an effective way.
The probability that a susceptible individual acquires the
infection from any given neighbor in an infinitesimal time
interval dt is bdt, where b defines the disease transmissi-

bility. At the same time, infected vertices are cured and
become recovered with probability mdt. Individuals thus
run stochastically through the susceptible ! infected !
recovered transitions, hence the name of the model. The
SIR model assumes that recovered individuals are basically
removed from the system, they do not participate anymore
to the disease dynamics, due to their death or acquired
immunization. Another popular model takes into account
the possibility that infected individuals are again suscep-
tible with probability m dt. In this case individuals thus run
stochastically through the cycle susceptible ! infected !
susceptible, defining the so-called SIS model. The SIS
model is mainly used as a paradigmatic model for the study
of infectious diseases leading to an endemic state with a
stationary and constant value for the prevalence of infected
individuals, i.e. the degree to which the infection is
widespread in the population.
A basic parameter in the analysis of a single population

epidemic outbreaks is the basic reproductive number R0,
which counts the number of secondary infected cases
generated by a primary infected individual (Anderson and
May, 1992). Under the assumption of the homogeneous
mixing of the population the basic reproductive number is
defined as

R0 ¼
b
m
. (15)

It is straightforward to see from Eq. (15) that in the single
population case any epidemic will spread across a non-zero
fraction of the population only for R041. In this case the
epidemic is able to generate a number of infected
individuals larger than those who recover, leading to an
increase in the overall number of infectious individuals IðtÞ.
The previous considerations lead to the definition of a
crucial epidemiological concept—the epidemic threshold
(Anderson and May, 1992). Indeed, if the spreading rate is
not large enough to allow a reproductive number larger
than 1 (i.e. b4m), the epidemic outbreak will not affect a
finite portion of the population and will die out in a finite
amount of time.
At the metapopulation level, however, the epidemic

behavior on the global scale is determined also by the
diffusion process of individuals. In particular, the effects
due to the finite size of subpopulations and the stochastic
nature of the diffusion might have a crucial role in the
problem of resurgent epidemics, extinction and eradication
(Ball et al., 1997; Cross et al., 2005; Watts et al., 2005;
Vázquez, 2007; Cross et al., 2007). Therefore it is important
to consider the discrete nature of individuals. Indeed, each
subpopulation may or may not transmit the infection to
another subpopulation it is in contact with, depending on
the occurrence or not of the travel event of at least one
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infected individual to the non-infected subpopulation
during the entire epidemic evolution. The spreading
process across subpopulations will therefore occur with a
probability that is related to the diffusion rate of
individuals and the total number of individuals who will
experience the infection (Ball et al., 1997; Cross et al., 2005,
2007). In the case of epidemic processes with R0o1 the
epidemic will die with probability 1 and is not going to
spread across subpopulations. In a model like the SIS
model, if R041 the number of infected individuals reaches
a stationary state and the epidemic will eventually spread
to different subpopulations, since locally endemic. In a
model such as the SIR model, however, the epidemic within
each subpopulation generates a finite fraction of infectious
individuals in a given amount of time and even if R041 the
diffusion rate must be large enough to ensure the timely
diffusion of infected individuals to other subpopulations of
the metapopulation system, before the local epidemic
outbreak dies out. This is captured by the definition of a
new predictor of disease invasion, R�, regulating the
number of subpopulations that become infected from a
single initially infected subpopulation, i.e. the analogous of
the reproductive number at the subpopulation level (Ball et
al., 1997; Cross et al., 2005, 2007).

This effect would not be captured by a continuous
deterministic description that would allow any fraction pI

of diffusing infected individual to inoculate the virus in a
subpopulation not yet infected (Ruan et al., 2006). In
certain conditions this fraction pI may be a number smaller
than 1 that just represents a mean-field average value. This
is a common feature of deterministic continuous approx-
imations that allow the infection to persist and diffuse via
‘‘nano-individuals’’ that are not capturing the discrete
nature of the real systems. For this reason, in the next
section we will use an approach working at the level of
subpopulations that allows to take into account effectively
the fluctuations inherent to the diffusion process and the
outbreak extinction probability.
metapopula

subpopulation

invasion dynamics at the 

subpopulation level:

not infected subpop.

diseased (i.e. infected)

pop i

diseased subpop.

i

Fig. 3. Schematic representation of the invasion dynamics at the level of the s

grained perspective as a network where each node represents a subpopulation w

the infected individuals diffusing on the system.
4.1. Global invasion threshold in homogeneous

metapopulation networks

Let us consider a metapopulation system in which the
initial condition is provided by a single introduction in a
subpopulation of degree k and size Nk, given R041. While
the stochastic nature of the process may lead in some cases
to the extinction of the process, as R0 is above the epidemic
threshold the epidemic will affect a finite fraction of the
population with non-zero probability. In the case of a
macroscopic outbreak in a closed population the total
number of infected individuals during the evolution of the
epidemic will be equal to aNk where a depends on the
specific disease model used and the disease parameter
values. Each infected individual stays in the infectious state
for an average time m�1 equal to the inverse of the recovery
rate, during which it can travel to the neighboring
subpopulation of degree k0 with rate dkk0 . To a first
approximation we can therefore consider that the number
of new seeds that may appear into a connected subpopula-
tion of degree k0 during the duration of the subpopulation
epidemic is given by

lkk0 ¼ dkk0
aNk

m
. (16)

In this perspective we can consider the metapopulation
model in a coarse-grained view (see Fig. 3) and provide a
characterization of the invasion dynamics at the level of the
subpopulations, translating epidemiological and demo-
graphic parameters into Levins-type metapopulation para-
meters of extinction and invasion rate. Let us define D0

k as
the number of diseased subpopulation of degree k at
generation 0, i.e. those which are experiencing an outbreak
at the beginning of process. Each infected subpopulation
during the course of the outbreak will seed the infection in
neighboring subpopulations defining the set D1

k of infected
subpopulations at the following generation and so on. This
corresponds to a basic branching process (Harris, 1989;
tion

j

S
individuals level:

S

I

R

stage of the 

disease

pop j

not infected subpopulation

ubpopulations. The metapopulation system can be considered in a coarse-

hich can be infected (i.e. diseased) if it is reached by the virus as carried by
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Ball et al., 1997; Vázquez, 2006) where the nth generation
of infected subpopulations of degree k is denoted by Dn

k.
In the early stage of the epidemics we assume that the

number of subpopulations affected by an outbreak (with
R041) is small and we can therefore study the evolution of
the number of diseased subpopulations by using a tree-like
approximation relating Dn

k with Dn�1
k . Let us first analyze

the case of a metapopulation system in the form of a
homogeneous random graph in which each subpopulation
has the same degree k ¼ k̄ and population N̄. In this case
we can drop the subscript index k (all subpopulations being
equal) and obtain that

Dn ¼ Dn�1ðk̄ � 1Þ 1�
1

R0

� �l
k̄k̄

" #
1�

Dn�1

V

� �
. (17)

This equation assumes that each infected subpopulation of

the ðn� 1Þth generation, Dn�1, will seed with infected
individuals a number of subpopulations during the course
of the outbreak that depends on the product of the number
of neighbor subpopulations minus the one which originally

transmitted the disease, k̄ � 1, times the probability that
the subpopulation is not already seeded by infected

individuals, ð1�Dn�1Þ=V , and the probability that the
new seeded subpopulation will experience an outbreak, i.e.

ð1� R
�l

k̄k̄
0 Þ (Bailey, 1975). The last expression stems from

the probability of extinction Pext ¼ 1=R0 given by a seed of
a single infectious individual (Bailey, 1975). The simplest

case of homogeneous diffusion of individuals dk̄ ¼ p=k̄

yields lk̄k̄ ¼ pN̄am�1=k̄. In order to obtain an explicit result

we will consider in the following that R0 � 151, so that the
system is poised very close to the epidemic threshold. In
this limit we can approximate the outbreak probability as

1�
1

R0

� �l
k̄k̄

" #
’ lk̄k̄ðR0 � 1Þ, (18)

and assuming that at the early stage of the epidemic

Dn�1=V51 we obtain

Dn ¼ pN̄am�1
k̄ � 1

k̄
ðR0 � 1ÞDn�1. (19)

This relation states that the number of subpopulations
affected by an outbreak will increase only if the quantity

R� ¼ pN̄am�1
k̄ � 1

k̄
ðR0 � 1Þ41. (20)

This relation defines the global invasion threshold, i.e. the
subpopulation reproductive number R� that is the analogous
of the basic reproductive number R0 in structured metapo-
pulation models. From the above expression it is possible to
write the threshold condition on the mobility rate

pN̄X
k̄

k̄ � 1

m
a
ðR0 � 1Þ�1 (21)

that fixes the threshold in the diffusion rate of individuals
for the global spread of the epidemic in the metapopulation
systems. In other words, this equation states that there is a
minimum rate for the traveling of individuals in order to
ensure that on average each subpopulation can seed more
than one neighboring subpopulations. As it has been
pointed out by Cross et al. (2007) we find that other factors
such as the infectious period and the mobility process are
as much important as R0 in the spread of epidemics in
structured populations. The constant a is larger than 0 for
any R041, and in the SIR case for R0 close to 1 it can be
approximated by (Murray, 2005):

a ’ 2
m
b

1�
m
b

� �
¼

2ðR0 � 1Þ

R2
0

, (22)

yielding the mobility threshold for the SIR model

pN̄X
k̄

k̄ � 1

mR2
0

2ðR0 � 1Þ2
. (23)

The above condition readily tells us that the closer to the
epidemic threshold is the epidemic in the single subpopula-
tion and the larger it has to be the traveling rate in order to
sustain the global spread into the metapopulation model.
We therefore find that we can define two different thres-
holds in a homogeneous metapopulation model. The first
one is the local epidemic threshold R041 within each
subpopulation and the second one R�41 represents the
global invasion threshold defining the traveling rate of
individuals according to Eq. (23). It is important to stress
that when R0 increases the small R0 � 1 expansions are no
longer valid and the invasion threshold is obtained only in
the form of a complicate implicit expression.
4.2. Global invasion threshold in metapopulation networks

with traffic dependent mobility rates

The calculation for the global threshold becomes more
complicated in the case of heterogeneous metapopulation
networks. In this case Eq. (17) has to include also the
degree and population heterogeneities yielding:

Dn
k ¼

X
k0

Dn�1
k0 ðk

0
� 1Þlk0kðR0 � 1ÞPðkjk0Þ 1�

Dn�1
k

V k

� �
.

(24)

This expression considers that each subpopulation of
degree k0 will seed the infection in a number k0 � 1 of
subpopulations corresponding to the number of neighbor-
ing subpopulations minus the one which originally
transmitted the infection, the probability Pðkjk0Þ that each
of the k0 neighboring populations has degree k, and the
probability to observe an outbreak in the seeded popula-
tion, where as before we considered the limit R0 � 151 to
obtain the outbreak probability as lk0kðR0 � 1Þ. As in the
previous case of the homogeneous network, we consider
the early stage of the epidemic in which ð1�Dn�1

k =V kÞ ’ 1.
In addition we assume that degree correlations can be
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neglected and Pðkjk0Þ ¼ kPðkÞ=hki obtaining

Dn
k ¼

kPðkÞ

hki
ðR0 � 1Þ

X
k0

Dn�1
k0 ðk

0
� 1Þlk0k. (25)

The behavior of the above expression depends on the
specific form of lk0k that is determined by the diffusion rate
dkk0 . Let us first consider the heterogeneous diffusion rate
of Eq. (7) that gives

lk0k ¼
phki

hkð1þyÞi

a
m
ðkÞy

k0
Nk0 ¼

phki

hkð1þyÞi2
a
m
ðkk0ÞyN̄, (26)

where in the last expression we have considered that
the size of each population of degree k is given by the
stationary diffusion process according to Eq. (10). The
equation describing the generation of infected subpopula-
tions is therefore read as

Dn
k ¼ ðR0 � 1Þ

k1þyPðkÞ

hk1þy
i2

pN̄a
m

X
k0

Dn�1
k0 k0

y
ðk0 � 1Þ. (27)

By defining Yn ¼
P

k0 D
n
k0

k0
y
ðk0 � 1Þ the last expression can

be conveniently written in the iterative form

Yn ¼ ðR0 � 1Þ
hk2þ2y

i � hk1þ2y
i

hk1þy
i2

pN̄a
m

Yn�1 (28)

that allows the increasing of infected subpopulations and a
global epidemic in the metapopulation process only if

R� ¼ ðR0 � 1Þ
hk2þ2y

i � hk1þ2y
i

hk1þy
i2

pN̄a
m

41. (29)

The subpopulation reproductive number is therefore an
increasing function of the network heterogeneity that plays
a role in the spread of the pathogen across subpopulations.
In the case of an SIR epidemic within each subpopulation,
the threshold on the mobility rate is provided by the
expression

pN̄X
hk1þy

i2

hk2þ2y
i � hk1þ2y

i

mR2
0

2ðR0 � 1Þ2
(30)

that differs from the homogeneous case for a correction
factor depending on the topology of the network.

Noticeably, the ratio hk1þy
i2=ðhk2þ2y

iÞ � hk1þ2y
iÞ is extre-

mely small in heavy-tailed networks and it is vanishing in
the limit of infinite network size. This implies that the
heterogeneity of the metapopulation network is favoring
the global spread of epidemics by lowering the global
invasion threshold.

4.3. Global invasion threshold in metapopulation networks

with population dependent mobility rates

As a final case let us consider the realistic framework in
which the diffusion rate of individuals is proportional to
the ratio between traveling people and population size,
i.e. pk ¼ Tk=Nk. In Section 3.2 we have seen that this case
corresponds to the mean-field assumption in metapopula-
tion models coupled by traveling fluxes, leading to a
stationary state in which the population Nk is stationary
and independent on the diffusion process. Here lkk0 ¼

w0ðkk0Þyam�1 and by using the approximations considered
in the previous cases the basic equation for the number of
infected subpopulations reads as

Dn
k ¼ ðR0 � 1Þ

k1þyPðkÞ

hki

w0a
m

X
k0

Dn�1
k0 k0

y
ðk0 � 1Þ. (31)

Also in this case by using the auxiliary function Yn ¼P
k0 D

n
k0

k0
y
ðk0 � 1Þ we obtain the recursive relation

Yn ¼ ðR0 � 1Þ
hk2þ2y

i � hk1þ2y
i

hki

w0a
m

Yn�1, (32)

yielding for the global invasion the condition

R� ¼ ðR0 � 1Þ
hk2þ2y

i � hk1þ2y
i

hki

w0a
m

41. (33)

In the case of an SIR model for the intra-population
disease we obtain

w0X
hki

hk2þ2y
i � hk1þ2y

i

mR2
0

2ðR0 � 1Þ2
, (34)

where also in this case the mobility threshold is lowered
by the topological fluctuations of the network as the
more heterogeneous is the metapopulation network and

the smaller is the ratio hki=ðhk2þ2y
i � hk1þ2y

iÞ. In this
respect it is worth remarking that in principle in an
infinite network with heavy tails the mobility threshold is

vanishing as the ratio hki=ðhk2þ2y
i � hk1þ2y

iÞ ! 0. In an
infinite network, however, the above equations should be
rewritten in terms of the density of diseased subpopulations
in order to avoid the pathological divergence of some
terms. Finally, it is interesting to notice that the effect
of the network heterogeneity on the subpopulation
reproductive number is similar to that of the contact
pattern heterogeneity on the basic reproductive number
(Anderson and May, 1992; Pastor-Satorras and Vespigna-
ni, 2001a; Lloyd and May, 2001; Barthélemy et al., 2005),
stressing even more the close analogy between the two
metrics.

4.4. Local and global threshold in real-world cases

It is worth stressing that the previous expressions are
approximate and valid only in the limit in which a small
fraction of the populations in the system is affected and in
which R0 � 151. It is, however, extremely relevant that
metapopulations systems have intrinsically two epidemic
thresholds. The emergence of a global epidemic is first
constrained by the intrinsic epidemic threshold within each
subpopulation, R041. If the epidemic process satisfies this
condition, each time an infectious individual seeds an
epidemic within a subpopulation, there is a finite prob-
ability that a macroscopic fraction of the population
will be affected by the outbreak. While this condition



ARTICLE IN PRESS
V. Colizza, A. Vespignani / Journal of Theoretical Biology 251 (2008) 450–467460
guarantees the intra-population spreading of the epidemic,
the inter-population spreading is controlled by the coupling
among subpopulations as quantified by the rate of
diffusing/traveling individuals. The global invasion thresh-
old condition R�41 provides an estimate of the rate of
diffusion of individuals above which the epidemic is able
to affect a macroscopic fraction of the subpopulations
defining the meta-population network.

At this point, it is useful to draw some gross estimate of
the critical population coupling w0 as a function of R0 and
of a realistic value of m. If we assume a very mild

reproductive rate of about R0 ’ 1:1 and a value m ¼ 1
3
per

unit time (1 day) as in many estimates for influenza strains,
we obtain that w0 per unit time must be larger than
approximately 20 individuals per day in the case of
homogeneous networks and one order of magnitude or
more smaller in heterogeneous networks. This is a value
met in most of the modern real transportation systems. For
example, the world-wide air transportation network
analyzed in Barrat et al. (2004) and briefly described
in Section 2.1 is characterized by a topology whose
degree distribution moments which appear in the ex-
pressions of the global threshold are given by: hki ’ 10,

and hk2þ2y
i � hk1þ2y

i ’ 7� 104, given that y ’ 0:5 (Barrat
et al., 2004). Therefore the condition expressed in Eq. (34)
states that an epidemic carried by air travelers would reach
global proportion if the average number of travelers per

day is larger than approximately 3� 10�3, a constraint
which is met in the airport network where the average
daily traffic on a given connection has a minimum

corresponding to ’ 10�2 (see footnote 1). The result of
this estimate is in agreement with recent studies on
contingency planning for a possible influenza pandemic,
which show that travel restrictions, reducing the rate at
which individuals leave an infected region, would not be
able to considerably slow down the global spread unless
490% or more effective (Hollingsworth et al., 2006;
Cooper et al., 2006; Colizza et al., 2007a). Our analytical
results show that the invasion threshold is extremely small
in realistic situationsand traffic reduction of more than one
order of magnitude are in order to bring the system below
the threshold.
5. Epidemic behavior above the invasion threshold

Above the invasion threshold we can assume that with
finite probability the epidemics will affect a macroscopic
fraction of subpopulations. In this limit, the stochastic
effect due to the diffusion can be neglected and it is possible
to study the epidemic spreading in the system by the
deterministic equations obtained from a mechanistic
approach to the metapopulation model where the disease
dynamics in each subpopulation can be viewed as a
reaction process (Colizza et al., 2007b). In the case of the
SIR scheme the dynamics is identified by the following set
of reaction equations:

I þ S! 2I , ð35Þ

I ! R. ð36Þ

In the SIS case the second reaction is just replaced by the
reaction I ! S. From the rate equations it is clear that the
dynamics conserves the total number of individuals. Before
the diffusion process, the I j and Sj individuals belonging to
the same subpopulation j react according to the Eqs. (35)
and (36). In each node j the spontaneous process I ! R

simply consists in turning each I j individual into an Rj

individual with rate m. This process accounts for the
recovery of infected individuals from the disease. The
process I þ S! 2I is related to the dependence of
the transmissibility on the population density. In general,
in large populations it is customary to consider that each
individual has a finite number of contacts per unit time. In
this case the probability that a susceptible has a contact
with an infectious individual is equal to the density of
infectious individuals within the subpopulation j, i.e. I j=Nj.
If we consider a homogeneous mixing assumption within
the population, the creation rate of infectious individuals
will be provided by bGj , where Gj is an interaction kernel of
the form

Gj ¼
I jSj

Nj

. (37)

It is natural also to consider different dependencies of the
transmissibility with respect to the density, giving rise to
different reaction kernels (Anderson and May, 1992;
Colizza et al., 2007b). We will provide an analysis of the
case of reaction kernels simulating population with internal
network structure and fully connected populations in a
forthcoming paper (Colizza et al., in preparation).

5.1. Deterministic reaction–diffusion rate equations

In order to provide the explicit equations describing the
dynamical evolution of the metapopulation system, we
generalize the basic mechanistic approach with degree
block variables used in the previous section to the complete
reaction–diffusion process. We take into account the
topological fluctuations of the coupling networks by
introducing the quantities:

Ik ¼
1

Vk

X
I j ; Sk ¼

1

Vk

X
Sj, (38)

which represent the average number of I and S individuals
in subpopulations with degree k. Analogously, the reaction
kernel in the homogeneous assumption is written for
subpopulation in each degree block as Gk ¼ IkSk=Nk.
Again it is worth remarking that the degree block variables
assume the statistical equivalence of subpopulations with
the same degree k. While this approximation is in fair
agreement with empirical analysis, real-world subpopula-
tions have differences that the present analysis does not
take into account.
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At the end of the reaction–diffusion process the variation
in the number of infected individuals in subpopulations of
degree block k can be written as a discrete master equations
with the form

Ikðtþ DtÞ � IkðtÞ ¼Wþ
k �W�

k , (39)

where the terms Wþ
k and W�

k identify the number of
infected individuals that entered or left the class Ik because
of both the disease dynamics and the diffusion process.
Assuming the general framework in which the diffusion
rate out of a given subpopulation depends on its degree, pk,
the depletion term W�

k can be simply evaluated as

W�
k ¼ pkIk þ ð1� pkÞmIk. (40)

The depletion term is just the sum of the Ik individuals that
diffuse away of the subpopulation (first term of the rhs)
and the infected individuals that do not diffuse away from
the subpopulation but have a transition to the class Rk

(second term of the rhs). The positive term Wþ
k takes into

account both the new infected individuals generated by the
disease dynamics within the subpopulation and the infected
individuals that diffuse from the neighboring subpopula-
tions with diffusion rate dkk0 , and it is given by

Wþ
k ¼ ð1� pkÞbGk þ k

X
k0

Pðk0jkÞdk0k½ð1� mÞIk0 þ bGk0 �.

(41)

The first term on the rhs considers the newly generated
infected individuals within the subpopulation with degree
k. The factor 1� pk takes into account only those
individuals that do not diffuse out of the subpopulation.
The second term accounts for all the infected individuals
arriving because of the diffusion process from neighboring
subpopulations. The factor k considers the presence of k

neighboring subpopulations, each one contributing a
fraction dk0k of its number of diffusing infected individuals
which is given by the non-recovering plus the newly
generated ones ð1� mÞIk0 þ bGk0 . Finally, on each connec-
tion edge we have to average over the probability that the
neighboring subpopulation has degree k0, that is, given by
the weighted sum over the conditional probability Pðk0jkÞ.
As for the simple diffusion in Section 3, we consider an
infinitesimal time interval Dt! 0 and divide both terms of
Eq. (39) to obtain the following set of differential equations

qtIk ¼ � pkIk þ ð1� pkÞ½�mIk þ bGk�

þ k
X

k0

Pðk0jkÞdk0k½ð1� mÞIk0 þ bGk0 �, ð42Þ

where all the parameter combinations are now infinitesimal
transition rates. By considering the uncorrelated case
Pðk0jkÞ ¼ k0Pðk0Þ=hki, we obtain the following dynamical
reaction-rate equations

qtIk ¼ � pkIk þ ð1� pkÞ½�mIk þ bGk�

þ
k

hki

X
k0

k0Pðk0Þdk0k½ð1� mÞIk0 þ bGk0 �. ð43Þ
Similar expressions can be written also for the evolution
of Sk and Rk.

5.2. The early stage of the epidemic outbreak

An explicit solution to the previous equations can be
obtained for the early stages of the epidemic. In this case
we can imagine to have a very small density of infectious
individuals in the metapopulation system so that in general
we can neglect contributions of order I2k. In this setting the
reaction kernel Gk can be approximated as

Gk ¼
ðNk � Ik � RkÞIk

Nk

’ Ik, (44)

where we have neglected all terms of order I2k and
considered that Rk is of the same order of Ik in the early
stage of the dynamics. The simplification of the reaction
kernel allows to write Eq. (43) for the evolution of the
number of infectious individuals in the following form

qtIk ¼ � pkIk þ ð1� pkÞðb� mÞIk

þ
k

hki

X
k0

k0Pðk0Þdk0k½ð1� mþ bÞIk0 �. ð45Þ

Explicit solutions to the above set of equations for the early
dynamics of infectious individuals in degree block k can be
found by considering the specific diffusion processes
already introduced in the previous section.

5.3. Traffic dependent mobility rates

By considering a uniform p and the expression for dkk0 of
Eq. (7) we obtain after some simple algebra the following
dynamical reaction-rate equations

qtIk ¼ �pIk þ ð1� pÞðb� mÞIk þ p
kð1þyÞ

hkð1þyÞi
½ð1� mþ bÞĪ �

(46)

that depend only on the number of infectious individuals,
and where Ī ¼

P
k0 Pðk

0
ÞIk0 . A solution for the average

number of infectious individual in the metapopulation
system is obtained by averaging both terms of the equation
over PðkÞ, obtaining

qt

X
k

PðkÞIk ¼ qtĪ ¼ ðb� mÞĪ , (47)

where we have considered that
P

k PðkÞkð1þyÞ ¼ hkð1þyÞi.
This equation has the simple solution

Ī ¼ Īð0Þeðb�mÞt, (48)

where Īð0Þ is the initial number of infected individuals in
the metapopulation system. It readily states that the overall
average number of infectious individuals in the system can
grow only if b4m, thus recovering the epidemic threshold
condition R0 ¼ b=m41. The metapopulation system ex-
hibits at the deterministic level an epidemic threshold
condition equivalent to that of each single population that
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sets the time scale for the whole system. Intuitively this is
stating that if the epidemic is not able to proliferate in each
local subpopulation, then it cannot produce a major
outbreak at the metapopulation level.

It is possible to solve the early time behavior for all
subpopulations of a given degree block IkðtÞ by plugging in
the explicit solution of ĪðtÞ in Eq. (46). This yields

IkðtÞ ¼ A
k1þy

hk1þy
i
eðb�mÞt þ Cke

½ð1�pÞðb�mÞ�p�t, (49)

where A and Ck are parameters fixed by the initial
conditions. If we assume that the metapopulation system
is seeded with a total number of I0 initially infected
individuals distributed homogeneously among subpopula-
tions, i.e. Ikð0Þ ¼ I0=V ¼ Īð0Þ 8k, we obtain

A ¼ Īð0Þ and Ck ¼ Īð0Þ 1�
k1þy

hk1þy
i

 !
. (50)

If the I0 infected are distributed only in the k0-block
subpopulations, Ikð0Þ ¼ dk;k0 Īð0Þ=Pðk0Þ, the coefficients A

and Ck assume the following values:

A ¼ Īð0Þ and Ck ¼ Īð0Þ
dk;k0

Pðk0Þ
�

k1þy

hk1þy
i

 !
. (51)

The above results show how the choice of initial condi-
tions, whether if homogeneously distributed or locally
distributed, affects the early stages of the epidemic
outbreak inside subpopulations of different block k. The
change in the initial stage of the disease evolution in
subpopulations depending on the degree block is confirmed
by the numerical results reported in Section 6.

5.4. Population dependent diffusion rate

If we consider a population dependent diffusion rate,
pk ¼ Tk=Nk, the system’s behavior will be given by
plugging into the set of Eq. (43) the degree dependent
diffusion rate pk and the expression of the rate of diffusion
on a link k0 ! k, dk0k ¼ w0ðk

0kÞy=Nk0 . In the approxima-
tion of early stage dynamics and considering the normal-
ization condition Tk ¼ k1þyw0hk

1þy
i=hki, we obtain

qtIk ¼ � pkIk þ ð1� pkÞðb� mÞIk

þ
k1þy

hk1þy
i
ð1þ b� mÞO, ð52Þ

where O ¼
P

k PðkÞpkIk. Proceeding along the line fol-
lowed in the previous section, the solution can be found for
the early stage behavior of the average number of
infectious individuals Ī ¼

P
PðkÞIk by averaging both

terms of the equation over PðkÞ:

qtĪ ¼ ðb� mÞĪ , (53)

yielding

Ī ¼ Īð0Þeðb�mÞt (54)
and thus recovering the epidemic threshold condition R0 ¼

b=m41 also in this case. The early stage behavior of the
epidemic in the deterministic approximation for the whole
system does not differ from what observed in the previous
heterogeneous frame. However, the dependence of pk on
the population Nk does not allow to use the same methods
adopted in the previous subsection to solve Eq. (52) in the
early time behavior for a given degree block IkðtÞ. The
explicit solution of IkðtÞ therefore, requires additional
investigation and future development to provide important
insight into the initial stages of the outbreak. It is worth to
mention that the solution for the population dependent
diffusion rate is obtained under very general conditions for
the size of the subpopulations Nk which can assume any
value, without being set by the dynamics as it happens for
traffic dependent mobility rates.
It is clear from the previous analysis that the determi-

nistic equations are not capable to account for the invasion
threshold as they consider the diffusion and reaction
processes in a mean-field perspective that provides deter-
ministic equations for the average values. Indeed, the
deterministic diffusion process allows any fraction pIk of
infected individual to deterministically seed new popula-
tions, washing out the stochastic effects responsible for the
invasion threshold. While these equations do not allow to
capture the invasion threshold, they provide a good
description of the system and its behavior across degree
classes above the invasion threshold, as we will show in the
next section by comparing the analytical results with
stochastic simulations at the mechanistic level.
6. Mechanistic numerical simulations

Here we provide extensive numerical simulations to
support the theoretical picture described above. We report
results from Monte Carlo simulations in a variety of
different cases and compare them with the analytical
findings. We adopt mechanistic numerical simulations
where each single individual is tracked in time, during
both the infection dynamics and the diffusion processes.
The system evolves following a stochastic microscopic
dynamics and at each time step it is possible to monitor
quantities which depend on the subpopulation—such as,
e.g. the number I jðtÞ of infectious individuals in the
subpopulation j at time t—and also averages over blocks
of nodes—e.g. the average number IkðtÞ of infected in
subpopulations with degree k—or over the whole system,
ĪðtÞ. In addition, it is possible to study the evolution of the
epidemic by monitoring the invasion dynamics at the local
population level, and therefore measure the number of
diseased subpopulations at time t, DðtÞ. Given the sto-
chastic nature of the dynamics, the experiment can be
repeated with different realizations of the noise, different
underlying graphs and different initial conditions. This
approach is equivalent to the real evolution of epidemic
processes in the generated networks and can be used to
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validate the theoretical results obtained in the analytical
approach.

The substrate network is given by an uncorrelated
complex network generated with the uncorrelated config-
uration model (Catanzaro et al., 2005), based on the
Molloy–Reed algorithm (Molloy and Reed, 1995) with an
additional constraint on the possible maximum value of the
degree in order to avoid inherent structural correlations.
The algorithm is defined as follows. Each node i is assigned
a degree ki obtained from a given degree sequence PðkÞ

subject to the restriction kioV1=2. Here we assume a
power-law degree distribution, PðkÞ�k�g, with g ¼ 2:1 and
3. Links are then drawn to randomly connect pairs of
nodes, respecting their degree and avoiding self-loops and
multiple edges. Sizes of V ¼ 104 and 105 nodes have been
considered. Weights on the connections among subpopula-
tions are defined following the statistical law found in real
transportation system (see Eq. (1)). Therefore, the weight
on the link between subpopulation i and subpopulation j is
given by

wij ¼ w0ðkikjÞ
y, (55)

where ki and kj are the degrees of the subpopulations i and
j, respectively. Here we fix w0 ¼ 1, whereas y assumes
different values, including y ¼ 0 for uniform weights. This
expression for the weights is then used to define the
diffusion rates in the cases analytically investigated, as in
Eqs. (7) and (13).

The dynamics proceeds in parallel and considers discrete
time steps representing the unitary time scale t of the
process. The reaction and diffusion rates are therefore con-
verted into probabilities and at each time step; the system is
updated according to the following rules. (a) Infection
dynamics: (i) The contagion process assumes that in each
subpopulation j individuals homogeneously mix and have a
finite number of contacts, so that the probability for a
susceptible to contract a virus from an infected is
proportional to the transmission rate and normalized to
the subpopulation size, b=Nj. At each time step in the
simulation, each susceptible is turned into an infectious
with probability 1� ð1� ðb=NjÞtÞ

Ij . (ii) At the same time,
each infectious individual is subject to the recovery process
and becomes recovered with probability mt. (b) After all
nodes have been updated for the reaction, we simulate the
diffusion process. Results shown in the following subsec-
tions refer to the traffic dependent diffusion rate.

6.1. Global and local threshold in heterogeneous

metapopulation models

In the previous sections we have shown that along with
the usual local epidemic threshold R041, the stochasticity
and discreteness of the metapopulation diffusion process
induce an intrinsic invasion threshold R�41—at the global
level—which rules the invasion dynamics in the coarse-
grained view of the system. This threshold determines
whether the coupling between subpopulation is high
enough in order to allow the virus to spread from one
subpopulation to another and invade a finite portion of the
whole system. Here we numerically investigate this
phenomenon by studying a metapopulation model with
heterogeneous structure ðPðkÞ ’ k�gÞ and varying the
coupling force between subpopulations. Initially, let us
consider that the diffusion rate of an individual on the
heterogeneous metapopulation structure is locally inde-
pendent of the degree of the subpopulation—i.e. pk ¼ p—
and heterogeneous on the links departing from a given
subpopulation, following Eq. (7). The rate of diffusion
from a subpopulation i to a subpopulation j for each
individual in any given compartment located in i is
therefore given by

dij ¼ p
w0ðkikjÞ

y

Ti

, (56)

where Ti ¼
P

jwij represents the traffic in i. The simula-
tions proceed according to the following procedure: at each
time step, after the update for the local infection dynamics
within the subpopulations (see previous section), each
individual in any compartment in subpopulation i moves to
a neighboring subpopulation j with rate dij. We analyze
different values of R0 by assuming m ¼ 0:2 and 0.02, and
varying the value of the transmission rate b. The
simulations start with a localized initial condition given
by the seeding of a subpopulation having degree k0 with
I0 ¼ 10 infected individuals. This allows to monitor the
epidemic evolution in the metapopulation model and
measure the final size of the epidemic, expressed in terms
of the number or density of cases obtained in the whole
system and the number of subpopulations experiencing an
outbreak.
In Fig. 4 we analyze the behavior of ĪðtÞ and DðtÞ for

R0 ¼ 3, above the local threshold, and for two values of the
diffusion rate p ¼ 0:5 and 10�5 that poise the system below
and above the invasion threshold, respectively. While in
both cases the figure shows an increase of the value of ĪðtÞ,
the behavior of DðtÞ is very different above and below the
invasion threshold. Indeed, above the invasion threshold
the number of affected subpopulations is increasing
exponentially, while below the threshold the number of
subpopulations remains small and goes to 0 in a finite time.
The increase in ĪðtÞ instead is guaranteed also below the
invasion threshold by the outbreak in the initial seeded
population. On a longer time, however, ĪðtÞ keeps in-
creasing only if the system is above the invasion threshold
and new subpopulations are progressively infected.
While Fig. 4 provides a clear evidence of the two

separate threshold mechanisms, a complete analysis of the
system phase diagram is obtained by analyzing the
behavior of the global metapopulation attack rate, defined
as the total fraction of cases Rð1Þ=N at the end of the
epidemic, as a function of both R0 and p. In Fig. 5, we
report the global attack rate surface in the p2R0 space, and
the 2D plots of the p and R0 crosscuts. Fig. 5 clearly shows
the effect of different couplings as expressed by the value of
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p in reducing the final size of the epidemic at a given fixed
value of R0. The smaller the value of R0, the higher the
coupling needs to be in order for the virus to successfully
invade a finite fraction of the subpopulations, in agreement
with the analytic result of Eq. (30). This provides a clear
illustration of the varying global invasion threshold as
a function of the reproductive rate R0. On the contrary,
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Fig. 4. Metapopulation system’s behavior above and below the global

threshold. Results refer to R0 ¼ 3, N̄ ¼ 103 and y ¼ 0:5. The epidemic is in

both cases above the local threshold, leading to an exponential increase of

ĪðtÞ. Differences in the diffusion rate values (top: p ¼ 0:5/unit time,

bottom: p ¼ 10�5/unit time) show the effect of the global threshold on the

number DðtÞ of diseased subpopulations. DðtÞ is normalized to the system
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the value of the final epidemic size in the metapopulation system as a function

threshold, larger values of the diffusion rate p need to be considered in order to

plots showing the cross-sections of the 3D plot at fixed values of R0 (top) and
p-crosscuts show that whatever the value of p, R0o1 does
not allow the epidemic to spread.
Finally, it is possible to study the effect of the

heterogeneity of the metapopulation structure. Fig. 6
shows the results obtained comparing a heterogeneous
network characterized by a scale-free degree distribution

PðkÞ�k�2:1 with a homogeneous network having the same

size V ¼ 105 and same average degree. The presence
of topological fluctuations leads to a smaller ratio

hk1þy
i2=ðhk2þ2y

i � hk1þ2y
iÞ, thus lowering the value of the

mobility threshold with respect to the homogeneous
network.

6.2. Epidemics above the invasion threshold

Above the global invasion threshold R�41, the epidemic
process is guaranteed to invade a macroscopic fraction of
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subpopulations and it is possible to inspect the validity of
the results obtained in Section 5 with the deterministic
reaction–diffusion equations. A general conclusion is that
the average number of infectious individuals in the system
in the early stage of the epidemic dynamics grows as

ĪðtÞ ¼ Īð0Þeðb�mÞt, (57)

if the threshold condition, R0 ¼ b=m41 is satisfied. The
early time behavior expressed in the above equation is also
independent of the parameters related to the diffusion
process among subpopulations, such as the homogeneous
diffusion rate p and the exponent y which governs the
relation between weights and subpopulation degrees. The
analytic result of Eq. (57) is confirmed in Fig. 7, where we
show simulation results of the metapopulation epidemic
model with traffic dependent diffusion rates. We consider
systems of V ¼ 104 subpopulations each of initial size
N̄ ¼ 104, connected through a heterogeneous network
having degree distribution PðkÞ ’ k�3. The disease para-
meters assume the following values: b ¼ 0:04 and m ¼ 0:02,
yielding R041. The simulations are seeded with Īð0Þ ¼ 100
infectious individuals, homogeneously distributed among
subpopulations. Both homogeneous (y ¼ 0) and hetero-
geneous (y ¼ 0:5) diffusions are considered, as well as
different values of the diffusion rate p ¼ 0:5; 0:75; 1:0 per
unit time.
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Fig. 7. Evolution in time of the average number of infectious individuals

in a heterogeneous metapopulation system with traffic dependent diffusion

rates. Top: the effects of the heterogeneity of diffusion ðyÞ, of the rate of

diffusion ðpÞ, and of the distribution of initially infected individuals in the

system (homogeneously distributed in a k-degree block or concentrated in

a single subpopulation) are compared and found to produce the same

early stage behavior. Bottom: changes in the initial condition value Ī

produce the same exponential increase in the metapopulation system

behavior.
Results in Fig. 7 show that the early behavior of the
average number of infectious individuals is independent of
the values of y and p, and of the location of the initial seed,
whether if homogeneously distributed among the subpo-
pulations of a given degree block or localized in a single
subpopulation. All simulations show an exponential
increase which confirms the analytic findings.
Numerical simulations also allow for the study of the

dynamic behavior of infectious individuals in subpopulations
of degree block k. The solutions obtained in Section 5.3
show a dependence of the early time behavior on the
degree k of the subpopulation, pointing to a dynamics
which switches on degree modes at different times. Results
of the numerical simulations confirm this findings, as
shown in Fig. 8. Here the disease parameters assume the
same values as before, and the diffusion is governed by the
values y ¼ 0:5 and p ¼ 0:75 for the numerical results
reported in the top panel, whereas the effect of different
values of y is reported in the bottom panel. In order to see
the effects of different initial conditions on the dynamical
behavior of degree block k subpopulations (see Eqs. (50)
and (51)), we seed the epidemics with (i) 102 infectious
individuals homogeneously distributed among subpopula-
tions, or with (ii) 102 infectious individuals localized in
subpopulations of degree block k0 (results in the top panel
correspond to k0 ¼ kmax). While the global behavior ĪðtÞ is
not affected by the choice of the initial conditions (see
previous figure), the subpopulations experience outbreaks
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dynamics of distinct degree blocks. Bottom: changes in the value of y
impact differently the time evolution of the average number of infected Ik

in each degree block, whether if k ¼ k0 (i.e. kmin) or kak0 (i.e. k ¼ kmax).
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at different times, as brought and delayed by the diffusion
dynamics. The system heterogeneity, as contained in the
factor k1þy=hk1þy

i of the explicit solution of IkðtÞ,
differentiates the evolution of the degree block subpopula-
tions at short times. Numerical results obtained for the
study of the effect of traffic heterogeneity (Fig. 8, bottom)
are compared with the analytical findings of Section 5.3.

7. Conclusions and outlook

Here we have introduced an analytic framework in terms
of degree block variables which allows to gain insights into
the behavior of mechanistic metapopulation epidemic
models which explicitly include demographic and mobility
heterogeneities. The system is shown to display a local
epidemic threshold which depends on the disease para-
meter values only and is responsible for the epidemic
outbreak at the local scale, and a global epidemic threshold
which determines the invasion dynamics of the subpopula-
tions and depends critically on the disease parameters and
the diffusion rates of the individuals. Changes in coupling
between subpopulations are shown to have critical
implications for disease extinction.

The results provide useful insights for the basic
theoretical understanding of mechanistic epidemic models
in complex environments, which can then be used to build
more realistic data-driven large-scale computational ap-
proaches for real case scenarios and spatially targeted
control measures. However, several key theoretical and
practical issues are still to be addressed. Data on human
dynamics at the local level, i.e. within any subpopulation,
could push forward a more sophisticate theoretical frame-
work for the local infection dynamics, to go beyond the
homogeneous mixing assumption (Meyers et al., 2005;
Lloyd-Smith et al., 2005). The behavior of metapopulation
models characterized by complex internal structure in each
patch is a major question for the theoretical epidemiology
of the future. In addition, more realistic and detailed
diffusion patterns should be included in order to better
model the coupling terms by including non-Markov
processes and introducing elements of memory in the
system. Obviously this corresponds to the need for more
accurate data on population behavior, such as fraction of
commuters, probability of short/medium/long range travel,
trip duration, and so on (Riley, 2007). Additional levels of
heterogeneity can be also included in the diffusive patterns
by introducing a dependence of the probability of diffusion
on the stage of the disease. In many real cases, e.g. the
severity of symptoms or hospitalization measures would
prevent the diffusion out of a patch to a portion of the
population. The impact of heterogeneities in traveling
pattern of individuals depending on their infection state
could provide additional insights fundamental to the study
of global extinction and eradication. All these improve-
ments and future directions would help filling the gap
between the evidence from increasingly realistic epidemic
models and their theoretical understanding.
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